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Abstract. A two-dimensional Ising model with nearest-neighbour ferromagnetic exchange
confined in a strip of widthLbetween two parallel boundaries is studied by Monte Carlo simulations.
‘Free’ boundaries are considered with unchanged exchange interactions at the boundary but long-
range boundary fields of the form H(n) = ±h[n−3 − (L − n + 1)−3], where n = 1, 2, . . . , L
labels the rows across the strip. In the case of competing fields and L→ ∞, the system exhibits a
critical wetting transition of a similar type as in the well studied case of short-range boundary fields.
At finite L, this wetting transition is replaced by a (rounded) interface localization–delocalization
transition at Tc(h, L). The order parameter profiles and correlation function G‖(n, r), where r
is a coordinate parallel to the boundaries of the strip, are analysed in detail. It is argued that for
T � Tc(h, L) the order parameter profile is essentially a linear variation across the strip, i.e. the
width w varies as w ∝ L, unlike the case in d = 3 where w ∝ L1/2 is the short-range case and
w ∝ lnL in the case of the n−3 boundary potential holds. The parallel correlation length ξ‖ scales
as ξ‖ ∝ L2 as for the short-range case. In addition to this case of competing boundary fields,
also the case where both boundaries are sources of fields of the same sign is studied, which then
compete with a uniform bulk field such that a capillary condensation transition occurs. The data
obtained are consistent with the Kelvin equation as in the case of the short-range surface fields.

1. Introduction

The interplay of finite-size effects and surface behaviour in systems confined by boundaries
has found much interest recently [1–57]. In particular, wetting transitions [58–98] become
significantly modified in confined geometry [31, 35, 37, 50–53, 57]. This influence on wetting
phenomena results from the constraining effect that external boundaries have on interfacial
fluctuations: in fact, understanding the interfacial profile and related correlations is an
interesting problem in itself [7, 9, 11, 14, 19, 47, 48, 90–98].

A particularly useful model to study such questions is the two-dimensional Ising lattice
exposed to boundary fields [1, 3–8, 29–31, 33, 37, 40, 44, 47, 48]. The interest in this model
is not so much due to experimental applications (possible e.g. via adsorption on regularly
stepped surfaces [31]) but due to the availability of exact calculations, at least in certain
limiting cases [27, 60–63]. Therefore almost all previous work (with the exception of Privman
and Švrakić [81] who considered wall potentials of 1/r type) has considered short-range forces
due to the boundaries. It is known [73, 74, 79], however, that long-range forces modify the
wetting behaviour significantly, and in fact for many physical problems, such as adsorption on
stepped surfaces where electronic charge distribution at steps causes the occurrence of dipolar
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potentials, the choice of long-range forces would be more realistic [97] than their short range
counterparts [96].

In the present paper we hence consider a nearest-neighbour Ising ferromagnet on L×M
square lattices (with M 	 L) and on the two boundaries (of length M) we apply long-range
boundary fields, which depend on the distance n of a lattice site from the boundary proportional
to n−3. Both the case of competing fields (opposite sign), where for temperatures T sufficiently
less than the critical temperature Tc an interface running parallel to the boundaries is stabilized,
and the case where both boundary fields have the same sign are considered. Then a phase
transition (capillary condensation) occurs at a suitable bulk field of a sign opposite to the sign
of the boundary fields [8, 10, 29, 30, 41–43, 50, 56]. Here we are interested in comparing both
this capillary condensation transition and the interface localization–delocalization transition
that occurs for competing boundary fields [31, 33, 35, 37, 38, 44, 50–53, 57] with their short-
range counterparts. Note that there is also a rich knowledge on boundary effects right at the
bulk Tc [1, 3–6, 15, 40, 46] that is useful in the present context.

In the following section we briefly review the known results pertinent for the present work,
while in section 3 we describe our results for competing boundary fields. Section 4 contains
our data for capillary condensation induced by long-range boundary fields, while section 5
summarizes our conclusions.

2. Theoretical background

2.1. Ising model

We consider an Ising ferromagnet on the square lattice

H = −J
∑
〈i,j〉
SiSj −H

∑
i

Si −
∑
n

H(n)
∑
iεn

Si (1)

where J is the nearest-neighbour exchange, the sum 〈i, j〉 is extended once over all nearest-
neighbour bonds and H is a uniform field that acts on all spins.

Choosing an L × M geometry with periodic boundary conditions in the x-direction,
figure 1, we have free boundary conditions in the y-direction, where we label successive layers
by the index n, and apply fields due to the free boundaries adjacent to the spins in layers n = 1
and n = L, respectively. While in previous work typically short-range boundary fields were
used, either of symmetric strength [30, 56]

H(n) = h[δ1n + δLn] n = 1, . . . , L (2)

or competing boundaries [31, 33, 37]

H(n) = h[−δ1n + δLn] n = 1, . . . , L (3)

in the present work we choose a potential that reduces to an n−3 potential for L→ ∞. In the
case of competing boundaries we take

H(n) = h[−n−3 + (L− n + 1)−3] n = 1, . . . , L (4)

while in the case of symmetric boundaries we take

H(n) = h[n−3 + (L− n + 1)−3] n = 1, . . . , L. (5)

Note that in the limit h → ∞ equation (2) reduces to the (++) fixed spin boundary condition
while equation (3) reduces to the (−+) boundary condition (for h > 0), widely studied in the
literature (e.g. [48]).
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Figure 1. Schematic configuration of an Ising L×M square lattice (a) with competing boundary
fields described by equation (3), contrasted with a solid-on-solid (SOS) configuration of an
interface (b), as well as the corresponding continuum (‘capillary wave’) model of the interface (c).
In the x-direction, always periodic boundary conditions are applied. If a spin at site y = n, x = k
is oriented negative, then the square for which this site is the lower left corner has been shaded. In
part (c), the definition of the correlation function G‖(x, y) between spins at two sites (marked by
crosses) with the same y-coordinate a distance x apart in the x-direction is indicated.

2.2. SOS limit and exact results

It is well known that the Ising model with competing boundaries (equation (3)) for T → 0
reduces to the solid-on-solid (SOS) model, where all bulk fluctuations (i.e., bubbles and holes
if one interprets the Ising magnet as a lattice gas, cf figure 1(a)) are suppressed, and overhangs
of the interface contour also are excluded (figure 1(b)). The only degree of freedom then is
the local height variable �k , and the bulk term of the Hamiltonian equation (1) reduces to (for
H = 0)

HSOS = −2J
∑
k

|�k+1 − �k|. (6)

The great simplification that equation (6) amounts to is that via equation (6) the original two-
dimensional Ising problem has been reduced to a quasi-one-dimensional Hamiltonian, which
is readily solved by transfer matrix methods [99]. Here we are interested in a correlation
function of spins displaced in a direction parallel to the boundaries, where i = (k, n = y),
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j = (k + x, n = y),
G‖(x, y) = 〈SiSj 〉 − 〈Si〉〈Sj 〉 (7)

and the correlation length ξ‖ which describes its asymptotic decay, G‖(x, y) ∝ exp(−x/ξ‖)
as x → ∞. For the Ising problem with (−+) boundary conditions in the SOS limit it has been
shown [47, 99]

1/ξ‖ = ln{[cosh(2J/kBT )− cos(2π/L)]/[cosh(2J/kBT )− cos(π/L)]} (8)

which for large L reduces to

ξ‖ ≈ 2[cosh(2J/kBT )− 1]

3π2
L2. (9)

For the (−+) boundary condition also the magnetization profile m(y) = 〈Si〉 across the
interface is known in the SOS limit [48, 99]

m(y) = (2y/L− 1) + π−1 sin[π(2y/L− 1)]. (10)

Defining a width of the interfacial profileW from the second moment [95],

W 2 = 2
∫

dy(y − y0)
2(dm/dy)

/ ∫
dy(dm/dy) (11)

where y0 is the midpoint of the profile, one finds [48]

W = (L + 1)(1/6 − 1/π2)1/2 ≈ 0.2556(L + 1). (12)

From equations (10) and (12), one can already see that the width of the interface is of the same
order as the strip width itself,W scales linearly with L, which means that the local position �k
of the interface in figure 1(b) explores the full region of the strip and is not localized near the
midpoint (y0 = (L + 1)/2 if L is odd) of the profile.

Using the transfer matrix solution for the Ising model with (−+) boundary condition
[100] the correlation length ξ‖ [47] and the profile m(y) [48] can be worked out at arbitrary
temperatures. In particular, one finds for T = Tc

ξ−1
‖ ≈ π/L− π/(

√
2L2) + · · · (13)

while for T < Tc and L→ ∞ [27, 47]

ξ−1
‖ = [3π2(2σ/kBT )]L

−2 (14)

σ/kBT being the interfacial stiffness. Since in the SOS limit σ/kBT = cosh(2J/kBT ) − 1,
equation (14) reduces to equation (9) for T for below Tc (numerical analysis shows [47] that
actually equation (9) approximates the Ising results accurately for T � 0.6 Tc.)

The sigmoidal shape of the magnetization profile, equation (10), gradually flattens [48] as
the temperature is raised, and right at Tc the profile is known exactly from conformal invariance
[40] for L→ ∞,

m(y) = −A
[
L

π
sin

(
πy

L

)]−1/8

cos

(
πy

L

)
(15)

where A is a constant. Equation (15) implies again W ∝ L, the constant of proportionality
being similar to that of equation (12) [48].

However, we emphasize that the d = 2 Ising model with (−+) boundary condition
(corresponding to h → ∞ in equation (3)) does not exhibit any interface localization–
delocalization transition: only for h/J < 1 does the corresponding semi-infinite Ising model
have a wetting transition [60] at hc(T ) given by

exp(2J/kBT )[cosh(2J/kBT )− cosh(2hc/kBT )] = sinh(2J/kBT ). (16)
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At the wetting temperature Tw(h) (the inverse function of h = hc(T ) given by equation (16))
the magnetization profile is particularly simple, namely linear [37]

m(y) = mb(−1 + 2y/L) (17)

except in the immediate vicinity of the boundaries. In equation (17), mb is the bulk
magnetization of the Ising model at T = Tw(h). From equation (17) we recognize that
the widthW (equation (11)) becomesW = L/√6.

2.3. Continuum theory: results for the capillary wave Hamiltonian

We now turn to the description of the confined interface in terms of the capillary wave
Hamiltonian (see figure 1(c))

H(�) =
∫ M

0
dx

{
σeff

2

[
d�(x)

dx

]2

+ Veff [�(x)]

}
. (18)

Here σeff/kBT is the interfacial stiffness (for simplicity we take for σeff the same value as
for a free unconfined interface between coexisting phases in the bulk, ignoring a possible
position dependence σ(�) [85, 86]), and Veff(�) is an effective potential acting on the interface
position due to the confining boundaries. According to mean field theory, �(x) would be
weakly fluctuating and then Veff(�) can be expanded around the midpoint position � = L/2 in
the strip [44, 53]. This yields, omitting constant terms (u(x) = �(x)− L/2)

H(u) =
∫ M

0
dx

{
σeff

2

[
du(x)

dx

]2

+
1

2

∂2Veff

∂�2

∣∣∣∣
�=L/2

u2

}
. (19)

Fourier decomposition of the local interface position u(x) and use of the equipartition theorem
yields for the mean square value of the Fourier component u(q) [53, 79, 84]

〈|u(q)|2〉−1 = σeff

kBT
(q2 + ξ−2

‖ ) (20)

where the parallel correlation length for interfacial fluctuations is given by

ξ‖ = [σ/∂2Veff(�)/∂�
2|�=L/2]1/2. (21)

For short-range surface fields as given in equation (3) one employs an effective potential
decaying exponentially with � [44, 53, 79, 84], a0, b0 and κ being constants,

Veff(�) = a0
T − Tw(h)
Tw(h)

[exp(−κ�) + exp(−κ(L− �))]
+b0[exp(−2κL) + exp(−2κ(L− �))] (22)

which approximates the exact behaviour [101] Veff(�) ∼ δ(�) + δ(L− �) for �	 κ and then

∂2Veff(�)

∂�2

∣∣∣∣
�=L/2

= 2 exp[−κL/2]κ2

[
a0
T − Tw(h)
Tw(h)

+ 4b0 exp(−κL/2)
]

(23)

and then we have for T > Tc(L) = Tw(h){1 − 4b0 exp(−κL/2)} a correlation length that
diverges exponentially with L as L→ ∞,

ξ‖ ∝ {[T − Tc(L)]/Tw(h)}−1/2 exp(κL/4). (24)

On the other hand, for a long-range potential of the form H(y) = h[−y−ζ + (L − y)−ζ ] (cf
equation (4)) the effective potential Veff(�) becomes

Veff(�) =
∫ L

0
dyH(y)m(y) (25)
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where one writes for the interfacial profile m(y) = tanh[(L/2 + u)/w0], with w0 being the
‘intrinsic width’ of the interface. This yields (for ζ = 3)

∂2Veff(�)

∂�2

∣∣∣∣
�=L/2

∝ hL−4 ξ‖ ∝ L2. (26)

Thus in this case mean-field theory predicts a much weaker increase of ξ‖ with L than
equation (24), namely an increase with the square of the strip width.

However, it must be emphasized that the mean-field result, equation (24), is completely
wrong in the two-dimensional case [27, 44] although it works at least qualitatively for d = 3
dimensions [51–53, 96]. Rather than an exponential variation of ξ‖ with L, one finds a power
law as in equation (26), for a boundary potential as given in equation (3)

ξ‖ ∝ L2. (27)

Equation (27) applies for temperatures above a ‘pseudocritical’ temperature Tc(L) with
Tw − Tc(L) ∝ L−1; below Tc(L) one has no true symmetry-broken phase but rather domains
(of length �domain ∝ exp(const ×L)) alternate where the interface is either bound to the lower
boundary or to the upper boundary [44]. This prediction reflects the fact that the Ising strip
is a quasi-one-dimensional system with short-range interactions and hence cannot show a true
phase transition [102]. One can interpret equation (27) from the fact that the meandering
interface (figure 1(b), (c)) creates at a distance � from a wall an effective entropic repulsive
interaction [68, 73], in d = 2 dimensions

Ventropic(�) ∝ kBT �−2. (28)

Using equation (28) in the mean-field formula, equation (21), one would recover the correct
result, equation (27).

Being interested also in the problem of capillary condensation, where H > 0 in
equation (1), we ask how ξ‖ behaves in the presence of nonzero bulk fieldH . For the short-range
case, the correlation length shows a scaling [44, 45]

ξ‖ ∝ L2ξ̃ (LH 1/3). (29)

Note that for large H the L-dependence cancels out from equation (29), since the scaling
function ξ̃ (ζ ) behaves as ξ̃ (ζ ) ∼ ζ−2, and hence ξ‖ ∝ H−2/3. The typical configurations then
consist of flat droplets of negative magnetization attached to the walls with a lateral extension
ξ‖ and a vertical extension ξ⊥ ∝ �̄ ∝ H−1/3 [68, 73]. Such configurations have indeed been
observed in recent simulations [56].

Wetting in d = 2 in the presence of long-range forces has been discussed by Kroll and
Lipowsky [65] and by Fisher and Huse [69]. For complete wetting, the effective interface
potential is

Veff(�) = −H� + b�−δ (30)

b being a suitable constant (b > 0). For δ > 2 the second term on the right-hand side of
equation (30) is irrelevant, the entropic repulsion (equation (28)) dominates and one still has
the same behaviour for ξ‖, ξ⊥ and the mean distance of the interface from the wall as in the
short-range case

ξ⊥ ∝ �̄ ∝ H−1/3 ξ‖ ∝ ξ 2
⊥ ∝ H−2/3 H → 0. (31)

On the other hand, for δ < 2 the long-range potential in equation (30) is relevant and the
simple scaling ξ‖ ∝ �̄2 is no longer valid since [69, 73]

�̄ ∝ H−1/(δ+1) ξ‖ ∝ H−(δ+2)/[2(δ+1)] ξ⊥ ∝ H−(δ+2)/[4(δ+1)]. (32)
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Thus for δ < 2 the diffuseness of the interface (which is measured by ξ⊥) is much smaller (for
H → 0) than the average distance �̄ from the wall, unlike the short-range case where both
lengths are predicted to be always of the same order of magnitude.

If we assume that equation (20) remains valid, if one simply uses the correct value of ξ‖,
we can calculate the mean square displacement of the interface for finiteM as follows

s2 = 〈u2(x)〉 =
∑
q

〈|u(q)|2〉 = 1

2π

∫ 2π/a

2π/M
dq〈|u(q)|2〉 (33)

where a is a short-wavelength cutoff (in the extreme case, a is the lattice spacing). Combining
equations (20) and (33) then yields

s2 = ξ‖
2πσeff

[
tan−1 2πξ‖

a
− tan−1 2πξ‖

M

]
. (34)

We are interested in the limit ξ‖ 	 a, of course, where tan−1(2πξ‖/a) ≈ π/2. If ξ‖ � M , we
can use tan−1(2πξ‖/M) ≈ 2πξ‖/M to find

s2 = ξ‖
4σeff

(1 − 4ξ‖/M) ξ‖ � M (35)

while in the opposite limit one obtains a result independent of ξ‖,

s2 ≈ M/[(2π)2σeff ] ξ‖ 	 M. (36)

Combining equations (35) and (27) one concludes

s2 ∝ L2 (37)

i.e. the width of the interfacial profile is of the same order as the thickness of the strip. For
long-range forces, on the other hand, using equation (32) for �̄ = L/2 yields

ξ‖ ∝ L(δ+2)/2 s2 ∝ L(δ+2)/2 < L2 for δ < 2. (38)

Thus the capillary wave treatment allows a simple generalization of the results known from the
exact calculations, equations (9)–(15) and (17). However, it should be noted that the validity
of equation (18) has been questioned on rather general grounds [87, 88].

Finally, we discuss the scaling theory for critical wetting [45, 69] and the interface
localization–delocalization transition that results from the capillary wave treatment in d = 2,
considering both the case of short-range forces and of long-range wall potentials with δ = 2.
Denoting the distance from the wetting transition temperature as ε, the singular part of the free
energy of the strip for small ε scales as follows

Fsing = L−2F̃ (Lεν‖/2, hε−3ν‖/2) = L−2F̃ (Lξ
−1/2
‖ , hξ

3/2
‖ ). (39)

In equation (39), we have ignored prefactors in the arguments of the scaling function F̃ (X, Y )
for simplicity. Taking first the limitL→ ∞ and then the limit ε → 0, theL-dependence must
cancel out from equation (39), and hence Fsing reduces to

Fsing = εν‖ f̃ (h−3ν‖/2
ε ) = ξ−1

‖ f̃ (hξ
3/2
‖ ) (40)

where f̃ (Y ) is another scaling function.
Now the theory [69] shows that for short-range wall forces as well as for long-range wall

forces with δ > 2 the entropic interaction equation (28) dominates, and one finds exactly
the same exponent ν‖ as in Abraham’s exact solution [60, 72], namely ν‖ = 2, and thus
Fsing = ε2f̃ (hε−3). On the other hand, if we keep L finite, Fsing shows (nearly) a singularity
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Figure 2. Snapshot of Ising strips with L = 31, M = 310, h/J = 0.25 for several choices of
t = T/Tc: 1.02, 1.00, 0.98, 0.96, 0.94 and 0.92 (from left to right). Down spins are shown as black
dots, up spins are not shown.

Figure 3. Magnetization profiles of Ising strips with L = 31, M = 310, h/J = 0.25 for several
choices of t = T/Tc , as indicated in the figure.

when the argument X in equation (39) is unity, and this yields the interface localization
transition, i.e., εc(L) = [Tw − Tc(L)]/Tw. Thus

X = Lεc = 1 εc(L) = L−1 Tc(L)− Tw ∝ L−1 (41)

both in the short-range case [37, 44] and in the long-range case for δ > 2.
Exactly for δ = 2, however, which is the case that will be numerically studied in the present

paper, a very interesting different behaviour occurs: Fsing only has an essential singularity, since
the correlation length ξ‖ diverges more strongly than any power law [69],

ξ‖ ∝ exp[const × ε−1/2]. (42)
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(a)

(b)

Figure 4. Snapshot of Ising strips with L = 61, M = 1220, h/J = 0.25 for t = 1.04, 1.02 and
1.00 (a), and 0.98, 0.96 and 0.94 (b). Down spins are shown as black dots, up spins are not shown.

Equation (42) is reminiscent of a Kosterlitz–Thouless transition [103]. In fact, just as in the
latter problem both the enthalpy of a vortex–antivortex pair at distance � scales as J ln � and
the entropy scales as T ln �, in the present case the enthalpy of the interface at distance � from
the wall scales as −h�−2 and the entropy scales as T �−2, equation (28), so one again has a
marginal case where both energy and entropy of the relevant degree of freedom scale in the
same way with the length.

Note that equation (42) formally means ν‖ = ∞, but the last expression on the right-
hand side of equations (39) and (40) can still be used. Applying again the criterion X = 1
(for Y = 0) to locate the interface localization–delocalization transition, we obtain the rather
unconventional new result

X = Lξ−1/2
‖ = 1 ⇒ ξc‖ = L2 εc(L) ∝ (lnL)−2 (43)

i.e.,

Tc(L)− Tw ∝ (lnL)−2. (44)
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Figure 5. Magnetization profiles of Ising strips with L = 61, M = 1220, h/J = 0.25, t = 1.04,
1.02, 1.00, 0.98, 0.96 and 0.92.

This result means that now Tc(h) is much more strongly depressed from Tw with decreasing
L than in the short-range case (equation (41)).

3. The Ising strip with competing boundary fields Hn ∝ n−3

Monte Carlo simulations have been performed for (L ×M) lattices, for the choices L = 7,
15, 31 and 61, respectively, and M = 10 L was chosen for L � 31 while M = 20 L = 1220
was chosen for L = 61. Some runs were also performed for L as large as L = 121 but we
found it rather difficult to obtain results of sufficient statistical accuracy for this strip width.
Note that we applied a single spin-flip Metropolis algorithm [104] throughout. Since the
problem involves a subtle competition between bulk and interfacial fluctuations and since, due
to the boundary fields, fluctuations near the boundaries are less correlated than fluctuations in
the bulk, we considered that cluster algorithms would offer little practical advantage, for the
regime of sizes accessible in the present study. Note that we investigated several choices of
the amplitude h of the boundary field, equation (3), namely h/J = 0.10, 0.25, 0.375, 0.50
and 0.65. For these choices of field amplitudes h, temperature scans were performed in order
to locate the (pseudocritical) transition temperature from the maximum of the susceptibility,
as done successfully in the short-range case [31–33]. The susceptibility is recorded from the
fluctuations of the total magnetization m = (LM)−1 ∑

i Si as

kBT χ
′ = (LM)(〈m2〉 − 〈|m|〉2). (45)

In addition, at the reduced temperature t ≡ T/Tc = 0.5 we have also performed scans of
h, in order to cross the curve of transition points hc = hc(T ) in a different direction than
above, and thus have a check on the numerical reliability of our procedures. Since the total
number of parameter combinations to be investigated was rather large, we had to be content
with a relatively modest statistical effort (typically 106 Monte Carlo steps per lattice site were
used). Even the present investigation needed a computer time investment of the order of 103

workstation hours.
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(a)

(b)

(c)

Figure 6. (a) Snapshots of Ising strips with L = 61, M = 1220, h/J = 0.50, t = 1.02, 1.00 and
0.98 (a), t = 0.96, 0.94 and 0.92 (b) and corresponding magnetization profiles (c).
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Figure 7. Comparison of magnetization profiles for h/J = 0.5, t = 0.85 and L = 7, 15, 31 and
61. The prediction of equation (10) is included (thick curve, the valuemb of the bulk magnetization
was taken from the exact solution [104]).

Figures 2–7 present typical data for L = 31 and L = 61, both for h = 0.25, focusing on
the magnetization profilesmn against n across the strip, together with corresponding snapshot
configurations. For 0.98 � t � 1.02 the snapshots show the typical critical clusters, with very
irregular surfaces, and many holes inside them, typical for fractal objects in the critical region.
Comparing these shapshots with corresponding pictures without the long-range boundary field
(cf e.g. [31, 33]), one would not be able to tell the difference. As we shall see later, the
quantitative analysis of our results confirms this impression that the long-range boundary field
produces very similar effects to its short-range counterpart, very unlike the three-dimensional
case [97].

For T < Tc but T > Tw(h) one can see very clearly that the wandering interface explores
the whole strip, consistent with the theoretical ideas reviewed in the previous section (note that
the scale in the x-direction has been strongly compressed for L = 61). The state for L = 61,
t = 0.94 is a nice example for a state at T < Tw(h), with a symmetry-broken state of positive
overall magnetization in the strip. This case (as well as the corresponding profile) indicates
that the domain size �domain ∝ exp(const × L) mentioned above exceeds M = 1220 already
distinctly, and so we have a monodomain sample rather than a multidomain configuration.
In contrast, the snapshot picture at t = 0.96 could be interpreted as a configuration with
two domains present, a domain with positive magnetization in the rest, but also inside these
domains the interface is still wandering a distance comparable to the width of the strip, and
in fact this temperature is estimated to be rather close to Tc(h, L = 61). In any case, the
snapshots confirm the qualitative assertion of figure 1(a) that overhangs as well as ‘bubbles
and holes’ are present.

The magnetization profiles give clear evidence that the width of the profile always is of
the same order as the widths of the strip, consistent with the theoretical considerations of the
previous section. An interesting feature is that for large L (e.g. L = 61) the maximum of |mn|
does not occur for n = 1 or n = L but somewhat away from the boundary, inside the strip.
This effect is observed both for T = Tc and for T < Tc, and for all choices of h (including
h/J = 0.50, see figure 6).
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(a)

(b)

Figure 8. (a) Comparison of magnetization profiles for the three-dimensional simple cubic Ising
ferromagnet at J/kBT = 0.232 (T/Tcb = 0.9554) and thin films of thickness D = 8 up to
D = 40, as shown in the figure, for the choice of short-range boundary fields, equation (3), with
h/J = 0.55. Data were generated in [52]. Arrows indicate that flat plateaus soon develop at the
bulk magnetizationmb . (b) A log–log plot of the widthsw (defined here fromw = 2mb/(dm/dz)0
where (dm/dz)0 is the slope of the profile at the midpoint, m(z) = 0) versus film thickness D.
From Kerle et al [106].

In the three-dimensional Ising model no evidence for such an effect was found (figure 8).
It is also obvious that the shape of the magnetization profiles in d = 2 (figure 7) and d = 3
(figure 8) differ qualitatively: in d = 3 for film thickness D → ∞ the magnetization profile
as a function of the normalized variable z = y/D simply develops into a step-function for
T > Tc(h,D), since the width only scales as w ∝ √

D for short-range wall forces [96, 105]
and as w ∝ � lnD for long-range wall forces [97],

m(z) = mb[−1 + 2θ(z− 1
2 )] D → ∞ Tw(h) < T < Tc. (46)
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Figure 9. Normalized magnetization profiles m(y)/m(3L̃/4) plotted against y/L̃ (L̃ = L − 1)
right at Tc for several choices of L as indicated in the figure. The full curve is the theoretical
prediction by Burkhardt and Xue [40], equation (15).

Figure 10. Location of the interface localization–delocalization transition temperature Tc(h) for
various choices of h and L, as indicated in the figure. The temperature is measured in units of the
bulk critical temperature known from the exact solution [105]. All Monte Carlo data refer to the
choice of the long-range potential, equation (4). The broken curve is a tentative extrapolation (cf
figure 11) toL→ ∞. The limiting field hc(T → 0) = [

∑∞
n=1 n

−3]−1 is known exactly, of course.
For comparison, also the exact result for the short-range case, equation (3), due to Abraham [60],
equation (16), has been included as a full curve.

In contrast, for d = 2 the width w of the profile and the strip width L scale proportionally to
each other, and therefore in the limit L → ∞ a nontrivial profile results, predicted from the
SOS model by equation (10), and confirmed by the capillary wave approach.
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Figure 11. Extrapolation of Tc(h) against 1/L (upper part) and against (lnL)−2 (lower part), for
several choices ofh as indicated in the figure. Temperature T is measured in units of the bulk critical
temperature, tc ≡ Tc(h)/Tcb . Dashed straight lines indicate extrapolations which are physically
implausible (see text).

While the magnetization profile indeed is a straight line in its central part at all temperatures
near Tc and below, we do not find any clear evidence that the results converge against a simple
straight line over the full width of the strip at Tc(h, L) asL→ ∞, as predicted in equation (17).
It is unclear to us whether this problem reflects the possibility that equation (17) does not hold
for the long-range potential considered here, equation (3), or whether our strip widths L are
not yet large enough, or whether the statistical errors of our data simply are underestimated.
A substantially larger computational effort, not yet possible at present, would be needed to
clarify that problem.

It is also interesting to compare our profiles right at the bulk critical temperature, Tcb, to
test the prediction by Burkhardt and Xue [40]. As is obvious from figure 9, the theoretical
curve (equation (15)) is very close to a straight line (from 0.1 � y/L � 0.9) and significant
deviations occur only near y/L → 0 and y/L → 1 where m(y) → ±∞. Since the slope of
the straight line is essentially fixed by the chosen normalization of the ordinate, it is not clear
whether the good agreement between simulation data and theory is significant: as a matter of
fact, the simulations bend over both at y/L→ 0 and y/L→ 1, and show no evidence for the
predicted divergence of equation (15) yet. Of course, m(y) must be finite at layer n = 1 and
n = L for any finite L, and thus it is a subtle matter how this singular behaviour develops in
the thermodynamic limit.

Next we turn to our results for the interface localization–delocalization transition
(figures 10 and 11). One recognizes that the phase diagrams resemble the phase diagrams
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(a)

(b)

Figure 12. Correlation function G‖(x, y) for the choice of parameters h/J = 0.25, t = 0.94 and
L = 15 (a) or L = 31 (b), respectively.

that apply in the case with short-range interaction [31, 60]. Of course, the extrapolation to
the thermodynamic limit L → ∞ is somewhat uncertain, in particular in the vicinity of
the bulk critical temperature Tcb: the treatment of section 2.3 in terms of the capillary wave
Hamiltonian makes sense only for strip widths L which are far larger than the correlation
length ξb of bulk thermal fluctuations. Clearly, for strips as narrow as L = 7 and temperatures
t � 0.9 this condition is not met. As a result, for small fields (h = 0.25) where the critical
temperatures tc(L) forL � 15 are so close to unity, one expects a crossover from the anisotropic
finite-size scaling of equation (39), where L scales with ξ⊥ ∝ ξ

1/2
‖ , to the standard isotropic

finite-size scaling where L scales with ξb [107–109]. Thus it is clear that the extrapolation
based on equation (44) does not work for small h—indeed the extrapolated wetting transition
temperature Tw = Tcbtc(∞) would exceed Tcb, which is physically implausible. Probably
the data for h = 0.1 fall mostly in the region where bulk finite-size scaling holds, while for
h = 0.25 the irregular behaviour may indicate crossover effects. Unfortunately, even for
h = 0.375 and h = 0.5 our results cannot really distinguish between the short-range result,
equation (41), and the new prediction, equation (44): both possibilities lead to equally well
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(a)

(b)

Figure 13. Semilog plot of the correlation function G(x) ≡ G‖(x, y = (L + 1)/2) in the centre
of the film versus x. Case (a) refers to the choice of parameters t = 0.94, h/J = 0.25 and three
choices of (L,M) as indicated in the figure; case (b) refers to the choice L = 45, M = 450,
h/J = 0.25 and three choices of the reduced temperature t , as shown in the figure.

defined straight lines, and also the predictions for Tw (= Tcbtc(∞))would not be very different
from each other, as the comparison of the lower and upper part of figure 11 demonstrates. As
one usually finds with logarithmic laws such as equation (44), a much wider range of L would
be necessary in order to clearly establish that equation (44) rather than equation (41) holds,
and this is not possible at present.

We now turn to the behaviour of the correlation function G‖(x, y) (equation (7)) and
associated correlation length ξ‖, see figures 12 and 13. All these data refer to the temperature
regime between the interface localization–delocalization transition Tc(L) and the bulk critical
temperature. As a consequence, G‖(x, y) reaches rather large values for short distances
x (x = 1, 2, for instance), and is maximal in the middle of the film (y = (L + 1)/2).



2718 E V Albano et al

Figure 14. Log–log plot of ξ‖ against L for t = 0.94 and h/J = 0.25.

Figure 15. Snapshots of Ising strips with L = 61, M = 610, h/J = 0.60 and t = 0.85, for four
choices of the bulk field: H/J = −0.05, −0.10, −0.15 and −0.20 (from left to right, respectively).
Note that spin down is interpreted as gas, spin up as liquid and occupied sites are indicated by a
dot.

A qualitatively similar behaviour has already been seen in a study of G‖(x, y) for a three-
dimensional model of a confined binary polymer mixture [96]. In that case, however, the
maximum of G‖(x, y) as a function of y was much sharper, in particular for large x, so
G‖(x, y) essentially behaved as a slowly decaying ridge centred at y = (L+ 1)/2, while a few
lattice spacings away from the centre the correlation function decays to zero with increasing x
very fast. In fact, for d = 3 dimensions and the short-range boundary fields considered there
[96], one expects an exponential variation of the correlation lengths ξ‖ with the thickness L
of the film, unlike the power law variation expected for the present case (see section 2). This
is qualitatively consistent with figures 12(a), (b), when we compare the case L = 15 with the
case L = 31 (note the different scales for x, however).

For a more quantitative analysis we fit the correlation function G(x) ≡ G‖(x, y = (L
+1)/2)) in the centre of the film (figure 13) to a simple exponential decay,G(x) ∝ exp(−x/ξ‖).
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Figure 16. Density profiles ρ(n) plotted against distance n across the film with L = 61,
M = 610, t = 0.85, h/J = 0.60 and several choices of the bulk field: H = 0 (open triangles),
H/J = −0.000 25 (open circles), H/J = −0.005 (full dots), H/J = −0.010 (diamonds),
H/J = −0.015 (full triangles), H/J = −0.020 (crosses), respectively.

Figure 17. Plot of the total density ρ against the bulk field H/J , for the case L = 31, M = 310,
t = 0.85 and h/J = 0.60. Full dots refer to a choice of the initial state with ρ = 1, while open
squares refer to a choice of the initial state with ρ = 0. Thermodynamic integration yields a
location of the transition at H/J ≈ −0.032.

This fitting procedure is subtle, since there are systematic deviations for small x, where this
asymptotic law is not yet expected to hold, as well as for large x; the latter are probably due
to insufficient equilibration and to finite size effects (M might have been not large enough).
At t = 0.94, we restricted the fit to the range 0.15 � G(x) � 0.50 (after checking that a
slightly different choice of this fitting interval yielded similar results). The correlation length
ξ‖ estimated in this way is plotted against L in figure 14 on a log–log plot. For large L these
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Figure 18. Plot of −Hc/J versus 1/L for h/J = 0.60 and t = 0.85, for the long-range case (open
circles) and a fit with the Kelvin equation (solid line).

results are compatible with the expected behaviour ξ‖ ∝ L2. Note that the saturation of ξ‖ for
small L is expected, since ξ‖ should not fall below ξb (note ξb(t = 0.94) ≈ 4.73).

In summary, hence, we have seen that Ising strips with competing boundary fields
(decaying with distance n as ±n−3) behave qualitatively very similarly to the case of short-
range boundary fields. Our simulation data are compatible with the pertinent theoretical
predictions, although a substantially better accuracy and a much wider range of L clearly
would be desirable—but this does not seem feasible at present.

4. Capillary condensation with long-range boundary fields

We now describe our results for the alternative choice of boundary fields, equation (5), which
have the same sign rather than opposite signs, but include now a bulk field H < 0 in order to
be able to observe a phase transition between a state of positive magnetization (for H > Hc)
to negative magnetization (for H < Hc < 0). While for L → ∞ this transition occurs for
Hc = 0, for finite L we expect a shift of this transition to a nonzero value Hc(L). It again
turns out that the behaviour of our model is rather similar to the case of short range boundary
fields studied previously [30, 56], and hence we summarize our results rather briefly.

Figure 15 shows a series of snapshot pictures of the case L = 61 (only the phase with
negative magnetization in the film is shown), while figure 16 presents corresponding density
profiles (interpreting spin down as gas and spin up as liquid in a lattice gas interpretation,
respectively). As in the short-range case [56], the fluctuation in the thickness of the wetting
layers at the walls is of the same order as the average thickness itself, and hence well defined
interfaces separating liquid and gas and running all the way parallel to the boundaries can
hardly be identified—the fluid layers at the boundaries rather decompose into irregular rows
of droplets attached to the boundaries. Recording the total density in the strip as a function
of H/J , one recognizes that there occurs considerable hysteresis (figure 17), and hence the
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(strongly first-order) capillary condensation transition must be located by the intersection of
the two branches of the appropriate thermodynamic potential, as explained in [56] in detail.
These thermodynamic potentials are obtained by thermodynamic integration (see [56]). We
have varied the width L of the strip from L = 31 up to L = 181 and found that the data are
again reasonably well consistent with the Kelvin equation Hc/J ∝ 1/L, as in the short-range
case (figure 18) [56]. Again the accuracy of our results is not good enough to allow a reasonable
search for the effects of systematic deviations from the Kelvin equation.

5. Conclusions

In this paper, Ising strips on the square lattice with nearest-neighbour ferromagnetic interaction
but long-range boundary fields (of the type ±h/n3) were studied, comparing the results to
corresponding studies with short range boundary fields, and to pertinent theoretical predictions.

In the case of competing boundary fields (i.e., opposite in sign but equal in absolute
strength) we present evidence that the interface stabilized in the system by this geometry
makes excursions in its local position spanning the full width of the strip. Both at the
bulk critical temperature Tcb and below it (not above the wetting transition temperature)
the results for the profiles of the order parameter across the strip seem to converge towards
the universal shapes predicted for the case of short-range boundary fields (figures 7 and 9,
respectively). While we have argued that the interface localization–delocalization transition is
shifted away from the wetting transition temperature Tw according to the rather unconventional
law Tw − Tc(L) ∝ (lnL)−2, unlike the short-range case where Tw − Tc(L) ∝ L−1, our data
unfortunately do not allow us to distinguish between these two possibilities (figures 10 and
11). The correlation functionG‖(x, y) also has been studied and preliminary estimates for the
associated correlation length ξ‖ have been obtained as well, and found to be compatible with
the theoretical expectations.

Finally, for the case where both boundary fields have the same sign, capillary condensation
phenomena are found to occur which again resemble very strongly the corresponding behaviour
for the short-range case. Thus we feel that all these phenomena are of a fairly general character,
thus are not sensitive to specific details of the models that have been studied. It hence would
be very interesting to look for such phenomena in corresponding experiments on monolayers
adsorbed on stepped surfaces.
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[100] Abraham D B and Martin-Löf A 1973 Commun. Math. Phys. 32 245
[101] Upton P J 1999 Phys. Rev. E 60 R3475
[102] Fisher M E 1969 J. Phys. Soc. Japan Suppl. 26 87
[103] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[104] Binder K and Heermann D W 1988 Monte Carlo Simulation in Statistical Physics: an Introduction (Berlin:

Springer)
[105] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[106] Kerle T, Klein J and Binder K 1996 Phys. Rev. Lett. 77 1318
[107] Fisher M E 1971 Critical Phenomena, Proc. 1970 E Fermi Int. School Phys. ed M S Green (London: Academic)

p 1
[108] Privman V (ed) 1990 Finite Size Scaling and Numerical Simulation of Statistical Systems (Singapore: World

Scientific)
[109] Binder K 1992 Computational Methods in Field Theory ed H Gausterer and C B Lang (Berlin: Springer) p 59


